
Implementing a Dynamic-Linking, Object-Oriented
Application Platform on the Macintosh

Elizabeth Brennan, Novell
Mike Russell, Novell

This paper describes a method for implementing a dynamic-linking, object-oriented application
platform on the Macintosh. The implementation described is a common, extensible software
platform for running network utilities. Our goal was to design a system that enables developers to
modify the existing functionality of a utility, and to leverage the functionality of existing utilities
when creating new ones. This design is realized by implementing a system that allows developers
to inherit or override the functionality of existing utilities. Because the relationships between
utility modules are resolved at run time,the utility developer need not have access to the system
source code, or even the source to its objects’ parent classes. By using this system, the developer
of the new utility gains speed and simplicity of implementation. More importantly, the end user
gains an important increase in interface consistency.

Introduction
As the number and variety of services available to
network users increase, the task of managing and
configuring those services becomes more and more
complex. When a new service is added to the
networking world, developers must create a
corresponding utility or set of utilities to administer that
service. In the Apple networking world, these utilities
appear as Chooser or Control Panel documents, as desk
accessories, or as stand-alone applications. Sometimes
the administrative functionality of a single network
service is distributed over several of these methods.
For example, this situation arises when a user wants to
submit a file to a network printer that is not the user’s
default device. The user must first access the Chooser
in order to select the printer. Monitoring the progress
of the print job on the queue requires the user to open
the Print Monitor application. Then, the user must
again invoke the Chooser to reset the default printer.

The lack of a good framework in which to run network
utilities is as hard on the utility programmer as it is on
the user. To make all the administrative functionality of
a network service available within a single context, the
programmer must currently reimplement the
functionality of already existing and well-known
utilities, in addition to designing and implementing the
new service. The alternative is to create a separate
utility that administers only the service’s unique
functionality; the user must then administer the rest of
the service with existing utilities. While this approach
allows for quicker delivery of new utilities, the user
must deal with a lack of consistency throughout the
administrative process with respect to both user
interface and system feedback.

An application platform that allows a developer to

leverage the functionality and user interface of existing
utilities when creating a new one provides him or her
with a faster and easier implementation path. More
importantly, the new utility runs exactly like the old one,
with the addition of a new feature. The user therefore
acquires new functionality and power with no loss of
interface consistency.

Design

It is possible to design a platform that solves these
problems for both user and developer. The key feature
of such a platform is the ability it would provide
developers to alter the functionality of an existing utility
by inheriting or overriding that functionality when
creating new utilities. Because the relationships
between utility modules are resolved at run time, the
utility developer need not have access to the existing
utility’s source code.

In our design, utilities are implemented as separate
code resources called snap-in modules. These modules
are compiled and linked independent of the application
platform, and invoked by the application at run time.
The platform, which we call a utilities console, consists
of three major elements. At the core of the platform is a
base console that dispatches user and system events to
the snap-in modules. We implement the inheritance
mechanism of the system on top of this core, by
providing a set of functions that allow snap-ins to define
and create classes and objects at run time. Finally, a set
of core classes define the framework for a basic GUI
environment and provide API-level access to lower-level
services and devices. These core classes are detailed in
the implementation section below.

Base Console
The base console is a stand-alone Macintosh
application. The main event loop of the console
functions as it would in any standard Macintosh
program. It receives events such as mouseDowns, and
relays the information to the appropriate snap-in. The
main event loop also looks for new snap-ins that may
have been introduced to the utilities console
environment. In our implementation, that environment
is the folder in which the console application resides. A
Preferences folder inside the System folder is another
possible configuration. When the base console notices
that a new snap-in has been dragged into its folder, it
adds that snap-in to a list or menu from which the user
selects snap-ins to execute.

In addition to user- or system-generated events, the
base console may tell a snap-in that another module has
sent it a message. The snap-in receiving the message is
responsible for handling it. Since the originator of the
message is unimportant and one function is executed
per message sent, a developer can implement a
scripting system to access the functionality of the base
console and its snap-ins.

Inheritance Mechanism
The design of our base console, with its associated
snap-ins, is not radically different from currently
existing Macintosh applications that implement add-on
or plug-in modules. However, on top of this dispatching
mechanism, we have implemented a true run-time
inheritance mechanism. To take advantage of this
feature, the utility developer writes code to inform the
base console that the new snap-in is a subclass of
another snap-in. The programmer then simply defines
those new and enhanced functions that differentiate the
new class from its parent.

Core Classes
We have defined a set of object classes that form the
base for a graphical user interface environment. At
the highest level in the class tree is a cleverly named
class called “object.” The code that creates an instance
of the class “object” resides in the base console.

Therefore, the root of our class hierarchy is always
available to any snap-in. “object” implements the
minimal methods and instance variables necessary for a
class, including methods to create and delete instances
of a class, a reference count used for allocation control,
methods to set and access an object’s name, and
methods to access a class’ parent, sibling, and subclass.

Architecture

The key element in our architecture is the run-time
binding of code modules into an object-oriented class
hierarchy. The base console mechanism implements
this binding. The object-oriented features of our system
are built on top of a non-object-oriented architecture, in
which the base console passes system and user events
to the appropriate snap-in modules. We will first
explain this non-object-oriented architecture before
explaining how to build the object-oriented features into
this core.

Console architecture
The base console architecture enables object-oriented
programming, but it does not enforce it. A developer
can create snap-in modules that receive and send
messages through the base console, and process those
messages in the classic procedural manner. These
procedural snap-ins do not rely on the existence of
other snap-ins in a hierarchy to implement part of their
functionality. Nor do they allow other snap-ins to
leverage their functionality through the inheritance or
overloading. Non-object-oriented snap-ins may still
send messages to one another, as well as to object-
oriented snap-ins, through the base console’s message
and event dispatching mechanism.

The principle behind the base console dispatch
mechanism is quite simple. When a snap-in is loaded,
an entry for that snap-in is added to a table of snap-ins.
Each snap-in table entry contains information that the
base console needs to manage that snap-in. One of the
pieces of information stored is the entry point to the
snap-in’s code resource.

The main event loop of the system resides in the base
console. The base console sees that active snap-ins in
the system get passed those events that apply to them.
It is also responsible for handing out idle time to snap-in
that have requested that service.

BaseConsole.c
/* Base console, main event loop */
main()
{
…
for (;;) {
…
if (GetNextEvent(everyEvent, &event)) {
switch (event.what) {
…
case activateEvt:
if ((snap = GetSnapIn ((WindowPeek)

event.message)) != 0)
CallSnapIn (snap, (long) &event,

eventCode);
…
break;

…
}

}
else
SnapIdle ();

…
}
…

}

/*
* Jump to the code entry point for our snap-in.
*/
CallSnapIn (snap, message, eventCode)
SnapIn *snap;
long message;
short eventCode;
{
ProcPtr codePtr;

if (snap->entry) {
…
codePtr = (ProcPtr) *snap->entry;
(void) (*codePtr)(snap, message, code);
…

}
…

}

The base console enables snap-in to snap-in
communication by passing messages from one snap-in
to another. Besides simple messages, one snap-in may
allocate memory it is willing to let other snap-ins
access. In these cases, the base console also acts as a
memory management monitor; ensuring that no shared
memory is trashed while any snap-ins are still using it.

This is the basic architecture which forms the core of
our system. The runtime-binding, object-oriented
system is built onto this core architecture.

Object-oriented architecture

We first present the terms that describe the object-
oriented aspects of the system architecture and
implementation. Generally speaking, our terminology is
quite standard for object-oriented design, but the
meanings of these terms do vary between different
OOPs implementations. We provide these definitions for
quick reference before getting into the nitty-gritty
aspects of the system architecture.

Class A template or pattern for the creation
of one type of object, specifying
methods, class variables, and
instance variables.

Class Variable A per-class variable.

Encapsulation Also known as Information hiding.
Encapsulation is the design principle
that provides access to an object’s
services while hiding the
implementation of those services and
the internal structure of the object’s
data from the user.

Inheritance A class' assumption of its superclass'
methods and variables.

Instance An object, with emphasis on its class
membership. Instance is to “citizen”
as object is to “person”.

Instance Variable A per-object variable.

Method A per-class function.

Object An allocated group of Instance
Variables, Methods, and Class
Variables. Objects are created using
a specific class as a template.

Polymorphism The sharing of method names by
several classes through inheritance.

Superclass The class from which a particular
class receives its initial methods and
variables. Superclass is synonymous
with parent class. A class is a
subclass, or child, of its superclass.
Sibling classes share the same
superclass.

The base console contains a set of function calls that
enable the object-oriented basis of our architecture.
When called by a snap-in, these functions create classes
and objects, and the methods and variables associated
with each. As these functions are called by the snap-
ins, a class hierarchy is built into a tree, with each class
in a subsidiary relationship to its superclass. Subsidiary
classes are said to be subclasses of their superclass.
The special class Object is the root class of the tree. It
has several built-in methods, including ones for creating
a generic object and for destroying a generic object.
Since the ability to create an object is built into the root
class of the tree, all classes can create instances of
themselves.

Another function built into the base console is used to
pass messages to appropriate objects in the inheritance
tree. This function (referred to as Send in the following
section) operates by locating the item to which the
message refers in the object's inheritance hierarchy.
Instance variables are searched first. If no matching
instance variable is found, the class hierarchy is
searched for a matching class variable or method. The
object's class is searched first, then its superclass, and
so on, until object, the root class, has been searched.

Methods and instance variables are referred to by 4
character (32 bit) identifiers. These identifiers may or
may not have mnemonic significance. The origin of the
message is unimportant. The Send function may have
been called by any snap-in within the system. Since all
the messages get passed through the base console, it is
possible to monitor all of the communication between
objects and snap-ins. Also, a scripting mechanism could
easily be implemented using this architecture that
would allow automated or remote messages to be sent
to and received from our class objects. The logical
extension of this architecture to encompass
AppleEvents is an exciting topic, but unfortunately, it is
beyond the scope of this paper.

Implementation

This section provides an example implementation of the
environment and architecture we have discussed. This
example implementation includes class definitions,
methods, class variables, instance variables,
inheritance, object creation, and message sending.

A basic class hierarchy
We have implemented our demonstration utilities based
on a hierarchy of class objects, where classes can be
described as either “view-controllers” or “models” (see
[Wittenberg, 1991]). “View-controllers” or “views” are
simply classes that implement visual images and
controls on the screen. Windows, scroll bars, and icons
are examples of familiar objects in the Macintosh world
that have been implemented as view-controller classes
in the utilities console. In our implementation,
“Models” are classes that describe the characteristics
and behavior of entities on a network, such as their
status, names, net addresses, and so on. Printer is an
example of a model class, while laser printer and color
printer would be examples of printer model subclasses.
Very often a parallel view class is created for model
classes. A view class called ViewPrinter would know
how to draw a printer and display information about its
state. A ViewPrinter object would contain a reference
to a Printer object and could send messages to the
model asking it about its status.

A particular snap-in might create instances of both a
model class and one or more parallel view classes. The
developer could then modify the behavior of an existing
utility at two levels. At the “view” level, he or she could
change the visual representation of data by altering or
subclassing a particular View class. For example, a
utility might display a textual list of printers with more
text indicating the status of each printer. A developer
could change this view to display the printers as icons
which change color according to their status. The same
model data is being viewed in the new utility as in the
old one, only in a graphical rather that textual format.

At the “model” level, the developer could change the
actual data which a particular view represents. For
example, a utility which displayed information about
users on the network might be made up of a view class
which shows icons and status text, and a model class
which defines the data that describes a user. It should
be possible to create a new model class for printers and
use the user-view class to display printer icons and text
with minimum changes .

To take advantage of this inheritance mechanism,
developers of snap-ins need to know about classes that
are defined in other snap-ins . Rather than require
snap-in developers to document and distribute their
classes and methods, we have created a tool that lets
developers gather that information directly from the
base console and snap-ins. This tool is a class browser
that is implemented as a snap-in. The browser displays
the class tree that is currently present in the system,
allows a user/developer to select a particular class, and
displays the methods and instance variables for that
class and all of its ancestors. A sample display of the
class browser is included at the end of this paper.

Design decisions
In any implementation of the architecture we have
described, the designers of the system have to make
certain decisions about just how strictly to enforce the
object-oriented paradigm. While the system described
here supports a complete object-oriented functionality,
it does not enforce it. There are several areas where we
permit violations of normal object-oriented discipline.
In this light, the next several paragraphs outline some
procedures for changing an existing class. The safest
procedures are listed first.

• Subclassing is the usual and desired way to modify a
class. The newly created class inherits methods, class
variables, and instance variables of the specified
superclass. The developer can then modify or override
existing methods and variables, and can add new
methods and variables. An example of a subclass is a
third party who adds a subclass of the network utility
class Printer called Acme Printer. Subclassing has the
advantage of not affecting existing objects, and the
minimizes possibility of a destructive collision with
another class definition.

• Adding methods or class variables to an existing class
is a bit riskier than simple subclassing, for two reasons.
Any change to a class is instantly propagated to existing
subclasses of that class, and to any existing instances of
those subclasses. For example, adding a method to an
existing class is appropriate if a vendor wishes to
replace or augment an existing class by adding another
item to a detail display. Use addition of methods or
class variables if you are unable to re-define your
problem in terms of subclassing. Be aware of the
danger of inadvertently changing something that may
break a subclass of the modified class.

• Adding methods that use new instance variables
achieves a new level of danger: objects created before
the addition generate a fatal error when they execute
the (per class) method that accesses the (per object)
instance variable.

For example, consider the addition of the instance
variable myVar and the method Increment_myVar to an
already existing class myClass. Previously created

instances of myClass inherit Increment_myVar, but not
myVar. Sending an Increment_myVar to one of these
objects causes a run-time error.

The rule is simple: add instance variables only at
initialization time, or after each instance of the class
and its descendants has been destroyed.

Implementation functions
These functions describe the scaffolding on which the
real work, classes and methods, are performed. The
data type ident_t is at this time equivalent to a null-
terminated string of which only the first 64 characters
are significant. The data type message_t is a 4
character (or 32 bit) identifier, that may or may not
have mnemonic significance. Unless stated otherwise,
these functions return a long error code.

ClassH GetClass(className)
ident_t className;
GetClass() returns a handle to the class named
className.

This function is normally used to convert the name of a
well-known class into a handle suitable for passing to
another function. GetClass() may also be used to check
for the existence of a class for sequencing purposes
during snap-in initialization.

ClassH NewClass(className, superClassName)
ident_t className;
ident_t superClassName;
NewClass() creates a class named className whose
superclass is superClassName. The function returns a
handle to the newly created class.

The new class inherits all the methods and variables of
the superclass, and is therefore functionally equivalent
to it. Subsequent calls to NewMethod, NewVar, and
NewClassVar can add to or modify the functionality of
the new class.

NewMethod(class, name, userfunc)
ClassH class;
message_t message;
long (*userfunc)();

userfunc(self, ...)
ObjectH self;
NewMethod() installs a method that responds to
message. When message is received via the Send
mechanism, the function userfunc is invoked.

In accordance with normal inheritance rules, the new
method takes precedence over any previously existing
inherited method responding to the same message in
the specified class and its descendants. The old method
remains accessible via SuperSend(), provided it is
indeed defined in a superclass.

Previously existing instances of the class have
immediate access to the new method. Usually, this
situation is desirable; however, problems occur if the
new method uses instance variables not present in an
object.

When Send() invokes this method, it calls userfunc()
with a copy of the parameters that were supplied to it.
In a similar vein, Send() copies and returns the return
value of userfunc().

NewVar(class, name, value)
ClassH class;
message_t name;
long value;

NewClassVar(class, name, value)
ClassH class;
message_t name;
long value;
NewVar() creates an instance variable name for the
supplied class with initial value value. This instance
variable will be incorporated into a template used by
the class' new method when creating new objects.

In accordance with normal inheritance rules, the newly
created variable takes precedence over any previously
existing inherited variable of the same name.

Variables created by NewVar() are allocated on a per-
object basis. Newly created objects belonging to the
class will have the new variable, but previously existing
instances of the class will be unaffected.

NewClassVar() operates identically to NewVar() except
that NewClassVar() creates a class variable rather than
an instance variable. Class variables are shared by all
objects belonging to the class. Previously existing
instances of the class will have immediate access to the
newly created class variable.

Send(object, name, ...)
ObjectH object;
message_t name;

SuperSend(object, name, ...)
ObjectH object;
message_t name;
Send() invokes an object's method or returns the value
of a class or instance variable.

Send() operates by locating the item designated by

name in the object's inheritance hierarchy. The function
searches instance variables first. If no instance variable
whose name matches name is found, Send() searches
the class hierarchy for a matching class variable or
method. It searches the object's class first, then its
superclass, and so on, until object, the root class, has
been searched.

If an instance or class variable matching name is found,
Send() returns its value. This functionality allows a
variable to be changed to a method, or vice-versa,
without effecting other programs. If name matches a
method, the method's function is called with the
parameters passed to Send(), except the name
parameter. Send() then forwards its parameters to the
method function, and returns the method function's
return value.

Send() also creates an object by invoking the new
method of the desired class. In this case Send() accepts
a class handle instead of an object handle.

SuperSend() operates like Send(), but invokes the
method or variable belonging to superclass. This
function is used within a method to invoke the
functionality of the superclass' method. To preserve the
integrity of method inheritance, the programmer must
insure that superclass is the parent of the method's
class, even if method is currently defined in an ancestor
of superclass.

SetVar(object, name, value)
ObjectH object;
message_t name;
long value;
SetVar() sets the value of a class variable or instance
variable. Object is a handle to the object whose
variable is to be changed. Value is assigned to the
name variable.

SetVar() operates by locating the item designated by
name in the object's inheritance chain. The function
searches instance variables first. If SetVar() does not
find an instance variable whose name matches name, it
searches the class hierarchy for a matching class
variable. SetVar() searches the object's class first, then
its superclass, and so on, until object, the root class, has
been searched.

If an instance or class variable matching name is found,
SetVar() sets the its value to value.

In keeping with good object-oriented practice, restrict
your use of SetVar() to the object's own methods. To
change a variable from outside an object, create a new
method and access it with Send().

Example
At the end of this paper are examples of source code
that implement two snap-ins. The code uses the class
building and accessing functions described above. The
first snap-in displays information about a generic
network entity. It defines generic model and view-
controller classes and then creates instances of those
classes. The second snap-in subclasses those generic
classes and creates a new utility that reads and displays
information about print queues.

Experiences and Evaluation

There are many random details that we haven't
addressed in this paper.

Among the outstanding architectural issues, we have
not addressed the issue of Multiple inheritance. Also,
the resolution of class hierarchy problem needs to be
resolved. At startup, several snap-in modules may be
trying to create classes. Under our current
implementation, it might be necessary to re-try the
NewClass() call several times until the superclass is
created by another snap-in. Admittedly, we need a more
orderly way to sequence class creation.

An implementation detail that we find ourselves
addressing regularly is memory management. Memory
management becomes a major issue when you start to
seriously think about allocating hundreds of objects in a
session. Our objects take up a fixed 58 bytes each; with
an additional 12 bytes needed for each method and
instance variable within the object. We believe that we
can reduce these sizes and are currently investigating
this issue.

Another implementation detail which we did not discuss
was performance. Early measurements of message
passing performance has been encouraging. Passing
messages through the base console via Send(), gives
access times on a par with Mac Toolbox calls.

Summary

Our goal was to design a system that enables quick
delivery of new network administration utilities having a

look and feel consistent with existent utilities. We
achieve this goal by implementing a true, runtime
binding, object-oriented architecture.

Implementation of this design does not require any
special programming languages or development tools.
A base console and object-oriented snap-ins can be
developed using standard programming environments.
Our implementation was produced using Think C
(without the Think Class Library) and some assembly
language to optimize the Send() function's performance.

With the exception of code resources, none of the
system we have described relies on Macintosh specific
architecture. Any platform that provides a dynamic-
linking interface for implementing snap-ins could be
used to implement this design.

Finally, there are a growing number of commercial
applications that use the snap-in architecture to extend
their functionality. As users of several of these
applications, we would be delighted to see an
inheritance mechanism like the one described here,
implemented in these products.

Acknowledgements

The authors would like to recognize their fellow team
members' contributions in the design and
implementation of this system — Harvey Crisler, Robert
Bailey and Mark Wittenberg. We would also like to
thank Robin Anderson for her helpful and timely
editorial assistance.

This paper was built on the work and contributions of
many engineers throughout Novell. Special recognition
and thanks goes to Phil Karren, Steve McBride and
their team in Provo for laying much of the groundwork
for this design, and for their invaluable contributions
and feedback.

References

Brad J. Cox, Object Oriented Programming. Addison-
Wesley, 1986.

Peter Coad and Edward Yourdon, Object-Oriented
Analysis. Prentice Hall, 1990.

A. Goldberg and D. Robson, Smalltalk-80: The Language
and its Implementation. Addison-Wesley,
1983.

Bjarne Stroustrup, The C++ Programming Language.
Addison-Wesley, 1986.

D. Wilson, L. Rosenstein and D. Shafer, C++
Programming with MacApp. Addison-Wesley,
1990.

Mark Wittenberg, “Multi-Platform Software
Development Using the Model-View-
Controller Design Paradigm”. Macintosh
Technical Conference: MacHack™ ‘91
Conference Proceedings, (June 1991).

The Class Browser

Sample Generic Snap-in
/*
* A snap-in that displays status information about a generic network entity.
*

* Model and View/Controller classes are defined to implement this snap-in.
* In most cases, the classes defined here will be used as parent classes to
* create more specific network objects.
*
* 3/23/91 by Mike Russell, Novell Inc.
*/

#include "SnapIn.h" /* Definition for SnapIn struct */
#include "NetSnapIn.h" /* Prototypes and definitions for this snap-in */
#include "Class.h" /* Definitions for class and object handles.
 Class construction function definitions. */

#include <SetUpA4.h> /* this statement must immediately preceed main() */

/* Receives and proccesses messages from the base console.
*/
main(snap, message, code)
SnapIn *snap;
long message;
short code;
{
 RememberA0();
 SetUpA4();

 switch(code) {
 case initCode:
 doInit(snap);
 break;
 case activateCode:
 case deactivateCode:
 case eventCode:
 doEvent(snap, (EventRecord *) message);
 break;
 case idleCode:
 doIdle(snap);
 break;
 case gaspCode:
 doGasp(snap);
 break;
 }
 RestoreA4();
}

/* Initialize snap-in table entry.
* Call initClasses if we're using objects in this snap-in.
*/
void
doInit(SnapIn *snap)
{
 InitBCGlue(snap); /* sets up address of BCGlue jump table */

 snap->needsLock = true;
 snap->needsIdle = true;
 snap->interval = 20L;

 initClasses(snap);
}

/* Process events received from base console.
* Pass it on to our View/Controller class if it's not a standard event.
*/
void
doEvent(SnapIn *snap, EventRecord *event)
{
 switch(event->what) {
 case keyDown:
 case autoKey:
 KeyService(snap, event);
 break;
 default:
 Send(GetClass("BCWin"), "Event", event);
 break;
 }
}

/* Last chance to clean up before disposing of this snap-in.
*/
void
doGasp(SnapIn *snap)
{
}

void
KeyService(SnapIn *snap, EventRecord *event)
{
 char c = (char)(event->message & 0xff);

 if(event->modifiers & cmdKey) {
 doMenu(snap, FrontWindow(), MenuKey(c));
 }
}

/* end snap-in template */

/* Set up classes used by this snap-in.
*/
void
initClasses(SnapIn *snap)
{
 PL_define(); /* Poll List */
 VIEW_define(); /* Generic View class */
 MODEL_define(); /* Generic Model class */

 initNetObjs(); /* Instantiate and initialize the classes
 we just defined */
}

/* Poll network objects periodically
*/
void
doIdle(snap)
SnapIn *snap;
{
 Send(GetClass("PList"), 'Poll');
}

Generic Model Class Definitions
/*
* Class_Model.c - Definitions for Model Class.
* This class should be subclassed to create explicit models.
*
* 4/12/91 by Mike Russell, Novell Inc.
*/

#include "Class.h"
#include "Class_List.h"

#define CLASS "Model" /* bindery model class name */
#define SUPER "object" /* superclass */

M_define()
{
 ClassH ch;

 if(GetClass(CLASS)) return;

 ch = NewClass(CLASS, SUPER);
 NewVar(ch, 'deps', 0);

 NewMethod(ch, 'new', M_new); /* create an instance */
 NewMethod(ch, 'dstr', M_destroy); /* destroy an instance */
 NewMethod(ch, 'DpAd', M_depadd); /* add a dependent object */
 NewMethod(ch, 'DpRm', M_deprm); /* remove a dependent */
 NewMethod(ch, 'Updt', M_update); /* send update to each dependent */
}

/* 'new' - create a model object
*/
static long
M_new(ObjectH self, Ptr xxx)
{
 int icon;
 ObjectH deps = (ObjectH)Send(GetClass("List"), 'new');

 self = (ObjectH)SuperSend(SUPER, self, 'new', icon);
 SetVar(self, 'deps', (long)deps);
 return (long)self;
}

static long
M_destroy(ObjectH self, Ptr xxx)
{
 ObjectH deps = (ObjectH)Send(self, 'deps');
 ObjectH oh;

 /* send '--' to each dependent, and destroy the dependent list */
 /* delete them in reverse order because of the way lists work */
 for_each_item_bwd(deps, oh)
 Send(self, 'DpRm', oh);
 Send(deps, 'dstr');
 SuperSend(SUPER, self, 'dstr');
}

/* add a dependent
*/
static long
M_depadd(ObjectH self, Ptr xxx, ObjectH oh)
{
 ObjectH deps = (ObjectH)Send(self, 'deps');
 Send(deps, 'Append', oh);
 Send(oh, '++');
}

/* remove a dependent
*/
static long
M_deprm(ObjectH self, Ptr xxx, ObjectH oh)
{
 ObjectH deps = (ObjectH)Send(self, 'deps');
 Send(deps, 'Delete', oh);
 Send(oh, '--');
}

/* send an update to each dependent
*/
static long
M_update(ObjectH self, Ptr xxx, ObjectH oh)
{
 ObjectH deps = (ObjectH)Send(self, 'deps');

 /* send 'update' to each dependent */
 for_each_item(deps, oh)
 Send(oh, 'Updt');
}

Generic View Class Definitions
/*
* Class_View.c
* Definitions for View (Window) class. This class supports generic view
* behavior, particularly CWindow functions, and support for model/view
* interraction. See Parc-Place Systems document "A description of the
* Model-View-Controller Interface Paradigm in the SmallTalk-80 System,
* Krasner and Pope, 1988.
*
* This class may have some use for very generic views, such as those
* whose contents consist entirely of VisObjs. But, it is intended
* for subclassing by specialized classes with explicit model display
* functions.
*
* 4/17/91 by Mike Russell, Novell Inc.
*/

#define CLASS "View"
#define SUPER "WINDOW"

#include "Class.h"

VIEW_define()
{
 ClassH ch;

 if(GetClass(CLASS)) return;
 if(!GetClass(SUPER)) WINDOW_define(); /* A core class that handles
 window stuff */
 ch = NewClass(CLASS, SUPER);
 NewVar(ch, 'VObj', 0); /* list of visible objects */
 NewVar(ch, 'wp', 0); /* window pointer */
 NewVar(ch, 'Modl', 0);

 NewMethod(ch, 'new', VIEW_new); /* create and add self to model list */
 NewMethod(ch, 'dstr', VIEW_destroy); /* destory and remove self from
 model list */
 NewMethod(ch, 'Updt', VIEW_Update); /* respond to a change in the model */
}

/* 'new' - Create a new view window.
* SuperSend to the parent class sets up the windowptr variable wp.
*/
static long
VIEW_new(ObjectH self, Ptr xxx, ObjectH model)
{
 self = (ObjectH)SuperSend(SUPER, self, 'new', (WindowPtr)0);

 /* Bump model's use count to reflect "Model's" reference.
 */
 SetVar(self, 'Modl', Send(model, "++"));

 /* Add ourselves to the model's list of dependents.
 */
 Send(model, 'DpAd', self);

 {
 /* Set model name as window title.
 */
 WindowPtr wp = (WindowPtr)Send(self, 'wp');
 SetWTitle(wp, pstr((char *)Send(model, 'name')));
 }
 return (long)self;
}

/* 'dstr' = destroy
* Destroy a view window
*/
static long
VIEW_destroy(ObjectH self, Ptr xxx)
{
 ObjectH model = (ObjectH)Send(self, 'Modl');

 /* remove self from the model's list */
 Send(model, 'DpRm', self);

 /* decrement model's use count */
 Send(model, '--');
 SuperSend(SUPER, self, 'dstr');
}

/* 'Updt' = Update
* Respond to a model change by invalidating our window
*/
static long
VIEW_Update(ObjectH self, Ptr xxx)
{
 WindowPtr wp = (WindowPtr)Send(self, 'wp');

 SetPort((GrafPtr)wp);
 InvalRect(&((GrafPtr)wp)->portRect);
}

Sample Print Queue snap-in
/*
* A snap-in which displays status information about a print Queue.
*
* Model and View/Controller classes are subclassed to implement this snap-in.
*

* 4/23/91 by Mike Russell, Novell Inc.
*/

#include "SnapIn.h" /* Definition for SnapIn struct */
#include "PrintQ.h" /* Prototypes and definitions for this snap-in */
#include "Class.h" /* Definitions for class and object handles.

 Class construction function definitions. */

#include <SetUpA4.h> /* this statement must immediately preceed main() */

/* Receives and proccesses messages from the base console.
*/
main(snap, message, code)
SnapIn *snap;
long message;
short code;
{

RememberA0();
SetUpA4();

switch(code) {
case initCode:

doInit(snap);
break;

case activateCode:
case deactivateCode:
case eventCode:

doEvent(snap, (EventRecord *) message);
break;

case idleCode:
doIdle(snap);
break;

case gaspCode:
doGasp(snap);
break;

}
RestoreA4();

}

…
… (snap in handling stuff here)
…

/* Set up classes used by this snap-in.
*/
void
initClasses(SnapIn *snap)
{

MPQ_define(); /* Print Queue Model */
VPQ_define(); /* Print Queue View */

PQInit(); /* create and initialize PQ objects */
}

/* This routine demonstrates creating instances of classes
* and sending messages to and receiving messages from
* the newly created objects.
*/
void
PQInit()
{
 short objID = 0;
 ObjectH visOh, modOh;

 visOh = (ObjectH)Send(GetClass("VPrintQ"), 'new');
 SetPort((GrafPtr)Send(visOh, 'wp'));

 while((objID = GetNextPrintQ(objID)) != err)
 {
 modOh = (ObjectH)Send(GetClass("MPrintQ"), 'new', objID);
 Send(GetClass("Icon"), 'new', modOh);
 }
}

Print Queue Model Class definitions
/*
* Class_MPrintQ.c - Definitions for the PrintQ Model Class.
*
* 4/17/91 by Mike Russell, Novell Inc.
*/

#define CLASS "PrintQ"
#define SUPER "Model"

#include "Class.h"

MPQ_define()
{
 ClassH ch;

 if(GetClass(CLASS)) return;
 if(!GetClass(SUPER)) return;

 ch = NewClass(CLASS, SUPER);
 NewVar(ch, 'stat', 1);
 NewVar(ch, 'CTyp', TYPE_PRINT_QUEUE);

 NewVar(ch, 'jobH', 0);
 NewVar(ch, 'Qsts', 0);
 NewVar(ch, 'Njob', 0);
 NewVar(ch, 'Nsrv', 0);
 NewVar(ch, 'Err', 0);

 NewMethod(ch, 'Poll', MPQ_Poll);
}

/* 'Poll' - update the net state, and send self an 'Update' if
* it changes. Return true iff state changed.
*/
static long
MPQ_Poll(ObjectH self, Ptr xxx)
{
 UINT32 oqstatus, onjobs, onservers, oerr;
 UINT32 qstatus, njobs, nservers, err;

 oqstatus = Send(self, 'Qsts');
 onjobs = Send(self, 'Njob');
 onservers = Send(self, 'Nsrv');
 oerr = Send(self, 'Err');

 refresh(self);

 qstatus = Send(self, 'Qsts');
 njobs = Send(self, 'Njob');
 nservers = Send(self, 'Nsrv');
 err = Send(self, 'Err');

 /* if a change occurred, update ourselves,
 * and send a poll to our superclass
 */
 if(qstatus!=oqstatus || njobs!=onjobs || nservers!=onservers || err!=oerr)
 {
 Send(self, 'Updt');

 SuperSend(SUPER, self,'Poll');
 return true;
 }
 return false;
}

Print Queue View Class definitions
/*
* Class_VPrintQ.c - definitions for Print Queue Visible object class
*/

#define CLASS "VPrintQ"
#define SUPER "VisObj"

#include "Class.h"

VPQ_define()
{

ClassH ch;

if(GetClass(CLASS)) return;
if(!GetClass(SUPER)) BVI_define();

ch = NewClass(CLASS, SUPER);
NewClassVar(ch, 'CTyp", PRINT_QUEUE);
NewClassVar(ch, 'dVCl", (long)GetClass("ViewPQ"));
NewVar(ch, 'Icn#', 1006);

NewMethod(ch, 'Draw', VPQ_Draw);
NewMethod(ch, 'Updt', VPQ_Update);

}

/* "Draw" - draw a print queue
*/
long
VPQ_Draw(ObjectH self, Ptr xxx)
{

ObjectH model = (ObjectH)Send(self, 'mmdl');

if(Send(model, 'Err') || Send(model, 'Qsts') || !Send(model, 'Nsrv'))
ForeColor(redColor);

else
if(Send(model, 'Njob'))
ForeColor(blueColor);

SuperSend(SUPER, self, 'Draw');
ForeColor(blackColor);

}

static long
VPQ_Update(ObjectH self, Ptr xxx)
{

ObjectH cw = (ObjectH)Send(self, 'cw');

/* just redraw ourselves */
SetPort((GrafPtr)Send(cw, 'wp'));
InvalRect((Rect *)Send(self, 'gRct'));

}

